Опубликовано Оставить комментарий

Математические дроби – просто о сложном

дробиВ статье описаны математические дроби: основные виды дробей, их основное свойство, а также все операции, которые можно выполнять с дробями (сокращение, приведение, сравнение, сложение, вычитание, умножение и деление).

Дробь и ее виды

Обыкновенная или простая дробь — это число вида a/b , где a — числитель дроби, b — знаменатель дроби. Суть дроби можно объяснить на примере пирога – например, дробь ¼ означает один кусок пирога из 4-ех.

 Правильная — дробь, у которой числитель меньше знаменателя (например, 1/5, 2/9).

 Неправильная — дробь, у которой числитель больше или равен знаменателю (например, 7/2, 5/5).

 Смешанная — дробь, записанная в виде целого числа и правильной дроби. Она представляет собой сумму этого числа и дроби. Любую неправильную дробь можно перевести в смешанную путем выделения целой части (например, 9/4 = 2 ¼).

 Десятичная — дробь со знаменателем 10, 100, 1000 и т.д. (например, 7/10 или 0,7; 9/100 или 0,09). Десятичная дробь записывается в виде целой и дробной части, которые отделяются запятой.

Математические дроби: основное свойство 

Если числитель и знаменатель умножить или разделить на одинаковое число (не ноль), то получится равная дробь. Например, 2/3 = 2*2 / 3*2 = 4/6.

Сокращение дроби

Основное свойство дроби используется для сокращения дробей или для преобразования с целью дальнейших арифметических действий (сложения или вычитания).

Чтобы сократить математические дроби, нужно разделить числитель и знаменатель дроби на НОД. Найти НОД можно с помощью онлайн калькулятора НОД

НОД – это наибольший общий делитель (то есть максимальное число, на которое делится и числитель, и знаменатель). Например, для дроби 4/20 наименьшим общим делителем будет 4 (4/20 = 1/5).

Сократить обыкновенную дробь можно с помощью калькулятора сокращения дробей.

Приведение дробей к общему знаменателю

Любые две дроби можно привести к общему знаменателю. Обычно дроби приводят к наименьшему общему знаменателю (НОК) – минимальное число, которое делится на каждый знаменатель. Найти НОК можно с помощью онлайн калькулятора НОК

Например, для дробей 1/4 и 1/3 общий знаменатель общий знаменатель равен 12, для дробей 1/6 и 1/3 общий знаменатель будет 6).

Для приведения дроби к общему знаменателю нужно:
1. Найти общий знаменатель – НОК (для дробей 1/6 и 1/9 общий знаменатель будет равен 18);
2. Найти множитель для каждой дроби – разделить общий знаменатель на знаменатель исходной дроби (для дроби 1/6 множитель будет равен 3 (18:6=3), для дроби 1/9 – 2 (18:9=2)).
3. Умножить числитель дроби на множитель (для дроби 1/6 получаем 1*3/6*3=3/18, для дроби 1/9 получаем 2*1/2*9=2/18)

Преобразование неправильной дроби в смешанную дробь и обратно

Любую неправильную дробь можно перевести в смешанную (рассмотрим на примере 14/3).
Для перевода необходимо выполнить деление числителя на знаменатель с остатком (14 разделить на 3 равно 4 и остаток 2): получавшаяся целая часть от деления (число 4) – целая часть дроби, остаток от деления (число 2) – числитель правильной дроби. Получаем число 4 2/3.
На примере пирога: каждый пирог разрезан на 3 части и всего есть 14 кусочков. Получаем, что 12 кусочков составляют 4 целых пирога и еще остается два кусочка).

Для перевода смешанной дроби в неправильную необходимо (рассмотрим на примере 4 2/3):
для получения числителя целую часть дроби умножить на знаменатель и прибавить исходный числитель (4 умножить на 3 и прибавить 2, получим 14); знаменатель оставить прежним (число 3).
На примере пирога: есть 4 целых пирога, разрезанных на 3 части, и еще 2 кусочка из трех; получаем 12 кусочков из пирогов, разрезанных на три части, и 2 кусочка из пирога, разрезанного на три части. Итого, получаем 14 кусочков пирогов, каждый из которых разрезан на три части.

Математические дроби: сравнение

Если сравнивать две математические дроби с одинаковыми знаменателями, то больше та дробь, числитель которой больше (например, 5/6 > 1/6, то есть пять частей из шести будет больше, чем одна часть из шести).

Если сравнивать две математические дроби с одинаковыми числителями, то больше та дробь, знаменатель которой меньше (например, 1/2 > 1/3, то есть 1/2 часть пирога будет больше, чем 1/3).

Чтобы сравнить две обыкновенные дроби, следует привести дроби к общему знаменателю и сравнить числители получившихся дробей (например, для сравнения 3/4 и 5/6 нужно привести дроби к общему знаменателю; получаем 9/12 < 10/12)

Для закрепления навыков счета дробей на сайте можно скачать программы

Сложение дробей

 Чтобы сложить две дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить без изменений. Например, 1/9 + 4/9 = 5/9.

 Чтобы сложить две простые дроби с разными знаменателями, следует: привести дроби к наименьшему общему знаменателю (НОК) и сложить числители полученных дробей (знаменатель будет равен НОК). Если получилась неправильная дробь, то ее нужно преобразовать в смешанную и при необходимости сократить. Например, 1/3 + 2/4 = 4/12 + 6/12 = 10/12 = 5/6.

Чтобы сложить две смешанные дроби с разными знаменателями, следует: привести дроби к наименьшему общему знаменателю (НОК), отдельно сложить целые части и числители полученных дробей (знаменатель будет равен НОК). Если получилась неправильная дробь, то нужно выделить целую часть и прибавить ее к полученной целой части, при необходимости сократить.

Для того, чтобы сложить дроби, используйте калькулятор обыкновенных дробей.

Вычитание дробей

Чтобы найти разницу двух дробей с одинаковыми знаменателями, нужно вычесть из числителя первой дроби числитель второй, а знаменатель оставить без изменений. Например, 7/9 – 2/9 = 5/9.

Чтобы вычесть дроби с разными знаменателями, следует: привести дроби к наименьшему общему знаменателю (НОК); из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменений; сократить полученную дробь. Например, 2/3 – 1/2 = 4/6 – 3/6 = 1/6.

Чтобы выполнить вычитание смешанных дробей, нужно:             
привести дробные части к наименьшему общему знаменателю;
если дробная часть уменьшаемого меньше дробной части вычитаемого, превратить ее в неправильную дробь, уменьшив на единицу, целую часть;
отдельно выполнить вычитание целых частей и отдельно дробных частей;
сократить полученную дробь.
Например, 5 1/9 – 1/4 = 5 4/36 – 9/36 = 4 40/36 – 9/36 = 4 31/36.

Для того, чтобы вычесть дроби, используйте калькулятор обыкновенных дробей.

Умножение дробей

Чтобы умножить дробь на натуральное число, надо числитель умножить на число, а знаменатель оставить без изменений. Например, 2/5 * 3 = (2*3)/5 = 6/5 = 1 1/5

Чтобы умножить две обыкновенные дроби, надо перемножить числители и знаменатели дробей. Например, 2/3 * 4/5 = (2*4)/(3*5) = 8/15.

Чтобы умножить две смешанные дроби, надо: преобразовать смешанные дроби в неправильные; перемножить числители и знаменатели дробей. Если получилась неправильная дробь преобразовать неправильную дробь в смешанную. Например, 1 2/3 * 2 1/5 = 5/3 * 11/5 = 55/15 = 11/3 = 3 2/3.

Для того, чтобы умножить дроби, используйте калькулятор обыкновенных дробей.

Деление дробей

Чтобы разделить дробь на натуральное число, надо знаменатель дроби умножить на число, а числитель оставить без изменений. Например, 2/3 : 5 = 2/15.

 Чтобы разделить натуральное число на дробь, следует число умножить на дробь обратную заданной. Например, 5 : 2/5 = 5 * 5/2 = 25/2 = 12 ½.

 Чтобы разделить две дроби, надо умножить первую дробь на дробь, обратную второй. Например, 2/3 : 4/5 = 2/3 * 5/4 = (2*5)/(3*4) = 10/12 = 5/6.

Чтобы разделить смешанные дроби, надо: преобразовать смешанные дроби в неправильные; умножить первую дробь на дробь, обратную второй.

Для того, чтобы разделить дроби, используйте калькулятор обыкновенных дробей.

Для закрепления навыков счета дробей на сайте можно скачать программы

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт защищен reCAPTCHA и применяются Политика конфиденциальности и Условия обслуживания применять.

Срок проверки reCAPTCHA истек. Перезагрузите страницу.