Опубликовано Оставить комментарий

Уравнение прямой на плоскости координат

В статье: 1) Общее уравнение прямой на плоскости координат,
2) Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору,
3) уравнение прямой, проходящей через данную точку с заданным направляющим вектором,
4) Уравнение прямой с угловым коэффициентом. Читать далее Уравнение прямой на плоскости координат

Опубликовано Оставить комментарий

Геометрия: основные понятия

Геометрия — это раздел математики, который занимается изучением геометрических фигур, в том числе основные понятия и определения, свойства и  признаки точек, линий, углов, двумерных и трехмерных объектов, а также их размеров и взаимного расположения. 

Основные геометрические фигуры — точка, прямая и плоскость. Читать далее Геометрия: основные понятия

Опубликовано Оставить комментарий

Геометрия: свойства углов

Угол — геометрическая фигура, образованная двумя лучами (сторонами угла), выходящими из одной точки (которая называется вершиной угла). 
На рисунке: точка A — вершина угла, лучи AB и AC— стороны угла. Обозначение: BAC (или ∠A — если понятно, о каком угле идет речь).

Читать далее Геометрия: свойства углов

Опубликовано Оставить комментарий

Подготовка к ВПР 4 класс

Подготовка к ВПР 4 класс: как эффективно подготовить ребенка к ВПР? Что надо делать, на что обратить внимание, с чего начать?

ВПР — это выпускная проверочная работа. Она предназначена для оценки качества работы школ, чтобы понять, насколько школы выполняют свою главную задачу. Читать далее Подготовка к ВПР 4 класс

Опубликовано Оставить комментарий

Подобные треугольники

Подобные треугольники — это треугольники, у которых  отношения всех их соответствующих сторон равны. Отношение k соответствующих сторон подобных треугольников называется коэффициентом подобия этих треугольников.
На рисунке:  △ABC∽△A1B1C1 ⇔ AB/A1B1=AC/A1C1=BC/B1C1; k=AB/A1B1=AC/A1C1=BC/B1C1. Читать далее Подобные треугольники

Опубликовано Оставить комментарий

Признаки равенства треугольников

Два треугольника называются равными, если все их соответствующие стороны и все соответствующие углы равны.

Существуют следующие основные признаки равенства треугольников:

  1. По двум сторонам и углу между ними,
  2. По стороне и двум прилежащим к ней углам
  3. По трем сторонам.

Читать далее Признаки равенства треугольников

Опубликовано Оставить комментарий

Геометрия: свойства треугольника

Треугольник – это геометрическая фигура, которая состоит из трёх точек, не лежащих на одной прямой (вершин треугольника) и трёх отрезков с концами в этих точках (сторон треугольника).

На рисунке: Треугольник ABC;
A, B, C – вершины треугольника ABC;
AB, AC, BC – стороны треугольника ABC;
∠BAC, ∠ABC, ∠ACB – углы треугольника ABC. Читать далее Геометрия: свойства треугольника

Опубликовано Оставить комментарий

Геометрия: свойства окружности и круга

Окружность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра окружности), которая лежит в той же плоскости, что и кривая.

Круг — геометрическая фигура, состоящая из всех точек плоскости, расстояние от которых до точки O не превосходит R. Читать далее Геометрия: свойства окружности и круга

Опубликовано Оставить комментарий

Геометрия: свойства квадрата

Квадрат– прямоугольник, у которого все стороны равны. Квадрат  является  правильным четырёхугольником, у которого все углы равны и все стороны равны.
Квадрат — это частный случай четырехугольника, параллелограмма, прямоугольника и ромба, поэтому квадрат также обладает всеми их свойствами. Читать далее Геометрия: свойства квадрата

Опубликовано Оставить комментарий

Геометрия: свойства прямоугольника

Прямоугольник — четырехугольник, у которого все углы прямые. Прямоугольник является частным случаем для четырехугольника, параллелограмма и ромба, поэтому обладает всеми их свойствами. Читать далее Геометрия: свойства прямоугольника