Калькулятор для цилиндра

С помощью онлайн калькулятора для цилиндра можно по известным данным вычислить объем цилиндра, площадь основания и боковой поверхности, площадь полной поврхности, радиус, диаметр, высоту.

онлайн калькулятор цилиндраОнлайн калькулятор для цилиндра позволяет по известным данным вычислить:

  • объем цилиндра,
  • площадь основания, площадь боковой поверхности и  площадь полной поверхности цилиндра,
  • элементы: радиус, диаметр и высоту.

 

Калькулятор для цилиндра: комментарий

Цилиндр — геометрическое тело, ограниченное цилиндрической поверхностью (называемой боковой поверхностью цилиндра) и не более чем двумя поверхностями (основаниями цилиндра).

Обозначения для цилиндра:
R – радиус, D – диаметр,
V – объем,
Sо – площадь основания, Sб – площадь боковой поверхности, S – площадь полной поверхности,
h – высота прямого кругового цилиндра (h1 и h2 — минимальная  и максимальная высота)
π – число Пи которое всегда примерно равно 3,14.

Прямой круговой цилиндр

Круговым называется цилиндр, если его направляющая является окружностью. Прямым называется цилиндр, если его образующая перпендикулярна основаниям.

Формулы для прямого кругового цилиндра:

Найти объем цилиндра, если известны:

  • радиус и высота цилиндра: V=πR2h
  • диаметр и высота цилиндра: V=πD2/4h
  • площадь и высота цилиндра: V=Sоh

Площадь(Sб) боковой поверхности прямого кругового цилиндра

Так как боковая поверхность представляет собой прямоугольник, то площадь боковой поверхности цилиндра определяется по формуле: Sб=2πR⋅h

Площадь(Sо) основания цилиндра

Основание цилиндра —круг, поэтому площадь одного основания находится по формуле площади круга: Sо=πR2.

Площадь(S)  полной поверхности прямого кругового цилиндра

Площадь полной поверхности цилиндра определяется по формуле: S=2πRh+2πR2=2πR(h+R)

Формулы нахождения радиуса и диаметра по:

  • высоте и объему: R=√(V/πh), D=2*√(V/πh)
  • площади боковой поверхности и высоте: R=Sб/2πh, D=2*Sб/2πh
  • площади основания и высоте: R=√(Sо/π), R=2*√(Sо/π)

Формулы нахождения высоты по:

  • радиусу и объему: h=V/πR2
  • площади боковой поверхности и радиусу: h=Sб/2πR
  • площади полной поверхности и радиусу: h=S/2πR-R

Скошенный цилиндр

Прямой круговой цилиндр со скошенным основанием (скошенный цилиндр) определяется радиусом основания R, минимальной высотой h1 и максимальной высотой h2.

Формулы для скошенного цилиндра:

  • Объем скошенного цилиндра: V=πR2(h1+h2)2
  • Площадь(Sб) боковой поверхности скошенного цилиндра: Sб=πR(h1+h2)
  • Площадь(Sо) оснований скошенного цилиндра: Sо=πR2+πR √(R2+((h1−h2)/2)2)
  • Площадь(S) полной поверхности скошенного цилиндра  
    S=Sб+Sо= πR(h1+h2)+ πR2+πR √ (R2+((h1−h2)/2)2)  = πR[(h1+h2)+ R+√ (R2+((h1−h2)/2)2) ]

 

Список всех онлайн-конвертеров на странице «Калькуляторы«.
Оцените статью
ПОЛЕЗНЫЕ ПРОГРАММЫ ДЛЯ УЧЕБЫ И РАБОТЫ
Добавить комментарий

Этот сайт защищен reCAPTCHA и применяются Политика конфиденциальности и Условия обслуживания применять.

Срок проверки reCAPTCHA истек. Перезагрузите страницу.