МНОГОГРАННИКИ (объемные геометрические фигуры): определения, формулы

объемные геометрические фигурыМногогранники (объемные геометрические фигуры) : определения, формулы периметра поверхности и площади. Виды: призма, параллелепипед ( в т.ч. прямоугольный параллелепипед , куб), пирамида ( в т.ч. усеченная пирамида).

Призма

Призма — многогранник, у которого две грани — равные многоугольники (основания), лежащие в параллельных плоскостях, а остальные грани (боковые) — параллелограммы, имеющие общие стороны с этими многоугольниками.

Многоугольник, лежащий в основании, определяет название призмы: треугольник — треугольная призма, четырёхугольник — четырёхугольная призма; пятиугольник — пятиугольная призма (пентапризма) и т. д.
Высота призмы – перпендикуляр, опущенный из любой точки одного основания. на плоскость другого.

➜ Прямая призма – призма, у которой боковые ребра перпендикулярны к плоскости основания (если нет – наклонная).

➜ Правильна призма – призма, в основании которой лежит правильный многоугольник.

призмаФормулы для призмы:

Объем призмы: V = So∙h
Площадь поверхности: S = 2∙So + Sбок
Где: V — объем призмы, So — площадь основания, h – высота, Sбок — площади всех боковых граней.

Параллелепипед

Параллелепипед — это призма, основание которой — параллелограмм.

Свойства параллелепипеда:

  • Параллелепипед имеет шесть граней и все они параллелограммы.
  • Противоположные грани попарно равны и параллельны.
  • Параллелепипед имеет четыре диагонали.
  • Все диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.
  • Основанием параллелепипеда может быть любая грань.
Типы параллелепипеда

➜ Прямой параллелепипед — это параллелепипед, у которого 4 боковые грани прямоугольники.

➜ Прямоугольный параллелепипед — это параллелепипед, у которого все грани — прямоугольники.

➜ Наклонный параллелепипед — это параллелепипед, боковые грани которого не перпендикулярны основаниям.

➜ Ромбоэдр — параллелепипед, грани которого являются равными ромбами.

➜ Куб — параллелепипед, грани которого являются квадратами. Все грани куба равны.

Параллелепипед формулыФормулы для параллелепипеда:

Объем параллелепипеда: V = So∙h
Площадь поверхности: S = 2∙So + Sбок
Где: V — объем параллелепипеда, So — площадь основания, h – высота, Sбок — площади всех боковых граней.

Параллелепипед формулыФормулы для прямоугольного параллелепипеда:

Объем прямоугольного параллелепипеда: V = a∙b∙c =  So∙ c
Площадь поверхности прямоугольного параллелепипеда:
S = 2·(Sa+Sb+Sc)  или  S= 2· (a·b+ b·c+ a·c)
Диагональ: d =√(a2+b2+c2)
Где: V — объем прямоугольного параллелепипеда, a — длина, b — ширина, с – высота, So  — площадь основания, Sa,Sb,Sc — площади соответствующих сторон. 

куб формулыФормулы для куба:

Объем куба: V = a3
Площадь поверхности куба: S = 6·a2
Диагональ: d = a√3
Где: V — объем куба, a — длина грани куба.

Пирамида

Пирамида — многогранник, одна из граней которого (основание) — произвольный многоугольник, а остальные грани (боковые) — треугольники, имеющие общую вершину.
По числу углов основания различают пирамиды треугольные (тетраэдр), четырёхугольные и т. д.

Вершина пирамиды – общая точка для всех треугольников.
Высота пирамиды – перпендикуляр, опущенный из вершины пирамиды на ее основание.

➜ Правильная пирамида – пирамида, у которой основание — правильный многоугольник, высота опускается в центр основания. В правильной пирамиде все боковые ребра равны, все боковые грани — равнобедренные треугольники. Высота треугольника боковой грани правильной пирамиды называется — апофема правильной пирамиды.

➜ Правильная треугольная пирамида — это многогранник, у которого одна грань — основание пирамиды — правильный треугольник, а остальные — боковые грани — равные треугольники с общей вершиной. Высота опускается в центр основания из вершины.

➜ Правильный тетраэдр – это тетраэдр, у которого все грани — равносторонние треугольники.

➜ Правильная четырехугольная пирамида — это многогранник, у которого одна грань — основание пирамиды — квадрат, а остальные — боковые грани — равные треугольники с общей вершиной. Высота опускается в центр пересечения диагоналей квадрата основания из вершины.

правильная пирамида формулыФормулы для правильной пирамиды:

Объем правильной пирамиды: V = 1/3 · (So · h)
Площадь боковой поверхности правильной пирамиды: Sбок = ½ · Pо· a
Где: V — объем пирамиды, So — площадь основания пирамиды, Sбок — площадь боковой поверхности, Pо — периметр основания правильной пирамиды, h — высота пирамиды. a — апофема правильной пирамиды.

Формулы для правильной треугольной пирамиды:

Объем правильной треугольной пирамиды: V =  h·a2 / (4/√3) 
Где: a — сторона правильного треугольника — основания правильной треугольной пирамиды, h — высота правильной треугольной пирамиды

Формулы для правильной четырехугольной пирамиды:

Объем правильной четырехугольной пирамиды: V = 1/3 · h · a2
Где: a — сторона квадрата — основания правильной четырехугольной пирамиды, h — высота правильной четырехугольной пирамиды.

Формулы для тетраэдра:

Объем тетраэдра: V = (√2 / 12) · a3
Где: V — объем тетраэдра, a — длина ребра тетраэдра.

Усеченная пирамида

➜ Усеченная пирамида — часть пирамиды между ее основанием и сечением (сечение параллельно основанию пирамиды и делит ее на две части).
Основание пирамиды и сечение — два основания усеченной пирамиды.
Высота усеченной пирамиды — расстояние между основаниями усеченной пирамиды.

➜ Правильная усеченная пирамида — пирамида, которая получена из правильной пирамиды. Все боковые грани правильной усеченной пирамиды — это равные равнобокие трапеции. Высота трапеции боковой грани правильной усеченной пирамиды называется — апофема правильной усеченной пирамиды.

усеченная пирамида формулыФормулы для усеченной пирамиды:

Объем усеченной пирамиды равен разности двух полных пирамид.
Объем правильной усеченной пирамиды:
V = 1/3 · h · (Sосн1 + Sосн2 + √(Sосн1Sосн2))
Боковая поверхность правильной усеченной пирамиды:
Sбок = ½ (Pосн1 + Pосн2) · a
Где: Sосн1, Sосн2  — площади верхнего и нижнего основания усеченной пирамиды, h — высота усеченной пирамиды, Pосн1, Pосн2 — периметры верхнего и нижнего оснований правильной усеченной пирамиды, a — апофема правильной усеченной пирамиды.

Также на сайте описаны тела вращения, в том числе :определения и формулы.

 

Оцените статью
( 8 оценок, средний 4.75 от 5 )
ПОЛЕЗНЫЕ ПРОГРАММЫ ДЛЯ УЧЕБЫ И РАБОТЫ
Добавить комментарий

Этот сайт защищен reCAPTCHA и применяются Политика конфиденциальности и Условия обслуживания применять.

Срок проверки reCAPTCHA истек. Перезагрузите страницу.