Уравнение прямой на плоскости координат

В статье: 1) Общее уравнение прямой на плоскости координат,
2) Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору,
3) уравнение прямой, проходящей через данную точку с заданным направляющим вектором,
4) Уравнение прямой с угловым коэффициентом.

Общее уравнение прямой на плоскости координат

Общее уравнение прямой в системе координат на плоскости — это уравнение вида Ax+By+C=0, где A≠0 или B≠0. Любое уравнение такого вида задаёт прямую.

Общее уравнение прямой на плоскости, проходящей через данную точку перпендикулярно данному вектору

В прямоугольной декартовой системе координат общее уравнение прямой l, проходящей через точку M0(x0,y0) перпендикулярно ненулевому вектору n имеет вид: A(x−x0)+B(y−y0)=0.

Уравнение прямой на плоскости, проходящей через данную точку с заданным направляющим вектором

В декартовой системе координат уравнение прямой l, проходящей через точку M0(x0,y0) параллельно ненулевому вектору a имеет вид:

  • Каноническое уравнение

или

  • Параметрическое уравнение

Уравнение имеет вид:

Ненулевой вектор, параллельный данной прямой или лежащий на ней, называется направляющим вектором этой прямой.

Точка M(x,y) лежит на прямой l тогда и только тогда, когда её координаты удовлетворяют данной системе при некотором t∈R.

Уравнение прямой с угловым коэффициентом

Уравнение вида y=kx+b задаёт в прямоугольной декартовой системе координат прямую l, не параллельную оси ординат.
Число k называется угловым коэффициентом прямой l. Угловой коэффициент прямой равен тангенсу угла наклона прямой l к положительному направлению оси абсцисс: k=tgα.
Угол наклона отсчитывают от этой оси до прямой l против часовой стрелки. Если прямая l параллельна оси абсцисс или совпадает с нею, то угол наклона считается нулевым.
Коэффициент b равен ординате точки пересечения прямой l с осью ординат. 

 

Оцените статью
( Пока нет оценок )
ПОЛЕЗНЫЕ ПРОГРАММЫ ДЛЯ УЧЕБЫ И РАБОТЫ
Добавить комментарий

Этот сайт защищен reCAPTCHA и применяются Политика конфиденциальности и Условия обслуживания применять.

Срок проверки reCAPTCHA истек. Перезагрузите страницу.